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Introduction

• In this topic, we will

– Describe using Newton’s method to find extrema of real-
valued functions of a vector variable

– Review the concept of the gradient and the Jacobian of a 
vector-valued function of a vector variable

– Look at two examples

– Understand when to use this technique
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Newton’s method

• Here is a straight-forward idea:

– Apply Newton’s method to the gradient

• Issue: You’re not sure if the point is a maximum, a minimum, or a 
saddle point

– A saddle point is where all partial derivatives are zero,
but the function does not achieve an extremum
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Newton’s method

• At an extreme point, all the partial derivatives are zero

– Consequently, we must find a point such that

• You will recall that
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Newton’s method

• Thus,                       becomes a system of n equations in n
unknowns

– If f is a non-constant linear polynomial in u, then there are no 
solutions

– If f is a quadratic polynomial in u, then the gradient defines a 
system of linear equations: just use linear algebra

– Otherwise, the gradient is non-linear, so go back to our 
algorithm on Newton’s method in n dimensions: we can find a 
solution to g(u) = 0 by choosing an initial u0 and iterating by 
solving                                             and setting   

• In this case, our vector-valued function of a vector variable is the 
gradient of f, so solve                                                 and set 
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The Hessian

• The Jacobian of the gradient of a real-valued function of a vector 
variable is called the Hessian of the function:

– We will continue to use the notation with the Jacobian

• If the function is sufficiently differentiable,
the Hessian is symmetric
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The Hessian

• This is the Hessian of f :
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The Hessian

• Recall from applying Newton’s method to the derivative of a 
real-valued function of a real variable:

– A solution to f (1)(x) = 0 is

• A local minimum if f (2)(x) > 0

• A local maximum if f (2)(x) < 0

• Of unknown character if f (2)(x) = 0

– That is, it could be a maximum, a minimum or a saddle point

• The same applies here:

– A solution to                        is

• A local minimum if                     is positive definite

– That is, all eigenvalues are positive

• A local maximum if                     is negative definite

– That is, all eigenvalues are negative

• Of unknown character otherwise
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Example

• Consider the function

5x2 + 6y2 + 7z2 + 2xy – 3yz – 28x + 6y – 3z + 1

– This is a quadratic polynomial in u, so we calculate:

– Thus, all we must solve is:

– Thus,                   , we note                        , and f (u) = –44
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Example

• Consider the function

5x2 + 6y2 + 7z2 + 2xy – 3yz – 28x + 6y – 3z + 1

– Recall if you applied Newton’s method to a system of
linear equations, it would converge after one iteration
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Example

• Consider the function

sin(2x + 5) + sin(y – 3) + sin(x – 2y – 4)
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Example

• There is a minimum close to x = –0.2 and y = 1.8

sin(2x + 5) + sin(y – 3) + sin(x – 2y – 4)
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Example

• We can calculate the gradient and Hessian:

sin(2x + 5) + sin(y – 3) + sin(x – 2y – 4)

– We find these are:
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Example

• Let us start with                         where f (u0) = –2.9242734350

– Thus,

– Thus, solving                                                   yields

– Thus,   

and f (u1) = –2.9313971404
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Example

• Continuing with                                             where f (u1) = –2.9313971404

– Thus,

– Thus, solving                                                   yields

– Thus,   

and f (u2) = –2.9313971865
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Example

• Finally, with                                             where f (u2) = –2.9313971865

– Thus,

– Thus, solving                                                   yields

– Thus,   

and f (u3) = –2.9313971865
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Implementation

• The images were made, and the results were verified in Maple

• The MATLAB code for the previous example was as follows:

>>  f = @(u)( sin(2*u(1)+5) + sin(u(2)-3) + sin(u(1)-2*u(2)-4) );

>> df = @(u)( [2*cos(2*u(1)+5) +   cos(u(1)-2*u(2)-4)

cos(u(2)-3) - 2*cos(u(1)-2*u(2)-4)] );

>> Jf = @(u)( [-4*sin(2*u(1)+5) - sin(u(1)-2*u(2)-4),                2*sin(u(1)-2*u(2)-4)

2*sin(u(1)-2*u(2)-4), -sin(u(2)-3) - 4*sin(u(1)-2*u(2)-4)] );

>> u = [-0.2 1.8]';

>> for i = 1:4

f(u)

df(u)

Jf(u)

du = Jf(u) \ -df(u)

u = u + du             # overwrite 'u'

end
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When to use?

• If you are simulating a system you have modelled,
chances are you have mathematical descriptions of each of 
the components in your system

– Consequently, you can explicitly calculate both the gradient and 
the Hessian exactly

• If you had a black-box function f for which you could not 
compute the partial derivatives,

other techniques are preferable
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Summary

• Following this topic, you now

– Are aware Newton’s method can be used to find extrema
for real-valued functions of vector variables

– You understand that you must compute both the gradient and the 
Jacobian of the gradient (the Hessian)

– Understand that other techniques are preferable if the partial 
derivatives cannot be precisely 

– Have seen two examples
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Colophon 

These slides were prepared using the Cambria typeface. Mathematical equations 
use Times New Roman, and source code is presented using Consolas.  
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and 
accenting the top of each other slide were taken at the Royal Botanical Gardens in 
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.
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Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.
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